Results: 58

A neural network for prediction of risk of nosocomial infection at intensive care units: a didactic preliminary model

ABSTRACT Objective: To propose a preliminary artificial intelligence model, based on artificial neural networks, for predicting the risk of nosocomial infection at intensive care units. Methods: An artificial neural network is designed that employs supervised learning. The generation of the datasets wa...

Aplicativo móvel de processamento de imagens digitais para classificação automática de tecidos de lesões por pressão
Mobile imaging app for automatic classification of pressure injury tissues

Enferm. foco (Brasília); 10 (7), 2019
Objetivo: avaliar o desempenho de uma técnica automática para extração de características dos tipos de tecidos de lesões por pressão por processamento de imagens digitais, embutida em um aplicativo móvel (App) para smartphones. Metodologia: estudo transversal controlado, realizado em 20 imagens d...

Caracterización de los estilos de aprendizaje en estudiantes de tercer año de Medicina

Edumecentro; 11 (3), 2019
RESUMEN Fundamento: el conocimiento de los estilos de aprendizaje de los estudiantes permite incidir positivamente en su rendimiento académico. Objetivo: caracterizar los estilos de aprendizaje de los estudiantes de tercer año de la carrera de Medicina de la Universidad de Ciencias Médicas de Holg...

Benign ovarian lesions with restricted diffusion

Radiol. bras; 52 (2), 2019
Abstract Developments in magnetic resonance imaging have expanded its role in the assessment of the female pelvis, including the diagnosis of ovarian lesions. In this setting, diffusion-weighted imaging has proven its diagnostic value, which is particularly important in differentiating between benign and...

Breast Cancer Prediction Using Dominance-based Feature Filtering Approach: A Comparative Investigation in Machine Learning Archetype

Abstract Breast cancer is the most commonly witnessed cancer amongst women around the world. Computer aided diagnosis (CAD) have been playing a significant role in early detection of breast tumors hence to curb the overall mortality rate. This work presents an enhanced empirical study of impact of domina...

Aplicación de redes neuronales en la predicción de mortalidad por neumonía
Neuronal networks as predictors of death in pneumonia

Rev. medica electron; 40 (5), 2018
RESUMEN Introducción: la neumonía adquirida en la comunidad constituye un importante problema de salud a nivel global. En nuestro país es la cuarta causa de muerte. Los índices pronósticos ayudan a detectar tempranamente los pacientes de alto riesgo, pero estos tienen baja sensibilidad y especific...

Herramientas de sistemas inteligentes en el diagnóstico de los síndromes coronarios agudos: una revisión sistemática

Arch. cardiol. Méx; 88 (3), 2018
Resumen Antecedentes: El infarto agudo de miocardio representa la primera causa de muerte no trasmisible a nivel mundial. Su diagnóstico es una tarea altamente compleja que se ha intentado modelar mediante métodos automáticos. Se expone una revisión sistemática de estudios de pruebas diagnósticas...

Analysis of influencing factors of severity in acute pancreatitis using big data mining

SUMMARY OBJECTIVES To evaluate the epidemiological characteristics of acute pancreatitis (AP) and explore potential relationships between these factors and severity. METHODOLOGY Data-sets of 5,659 patients with AP from health statistics and the Information Center of Jiangsu province, between 2014 and...

Technical Losses Reduction in Underground Reticulated Distribution Systems using Artificial Neural Networks and Smart Grid Features

Braz. arch. biol. technol; 61 (spe), 2018
ABSTRACT This work presents the methodology, development and testing of an autonomous system, based on Artificial Neural Networks (ANN), for the reduction of technical losses in reticulated underground systems through the optimal control of the capacitor banks (CBs) present in the grid. The proposed meth...

Power Flow Analysis and Self-recovery of Electrical Energy Distribution Network Using Artificial Neural Networks

Braz. arch. biol. technol; 61 (spe), 2018
ABSTRACT A computational model for self-recovery of electricity distribution network was developed to simulate it, emulated by the IEEE 123 node model. The electrical system considered has automatic switches capable of identifying a momentary failure in the line and finding the best reconfiguration for i...