Effect of self-etching primer associated to hydrofluoric acid or silane on bonding to lithium disilicate
Braz. dent. j; 30 (2), 2019
Publication year: 2019
Abstract To evaluate the effect of combining 5% hydrofluoric acid (HF) and silane (SI) with the self-etching ceramic primer on the immediate and after 1-year of water storage on bonding efficacy, conditioning pattern (CP) and chemical interaction (CI) to the lithium disilicate. A total of 16 CAD/CAM blocks of lithium disilicate (LD) were cut into four square sections (n=64). For bonding efficacy evaluation, the LD specimens were divided into 4 groups (n=10): 1) HF+SI; 2) self-etching ceramic primer (MEP); 3) HF+MEP; 4) MEP+SI. After each treatment, an adhesive system was applied and Tygon matrices were filled with a dual-cured resin cement followed by light curing. Cylinder specimens (0.8 mmx0.5mm) were stored in water (37 °C for 24 h or 1-year) and submitted to the μSBS test (2-way ANOVA and Tukey's test; a=0.05). CP and CI were only evaluated qualitatively. No significant difference on the μSBS was observed between groups (p=0.73), but reduced μSBS was observed after 1-year of water storage (p>0.0001). After application of HF+SI and MEP, reduction in a number of siloxane bonds was observed, suggesting the coupling of SI on the LD surface. HF or HF+MEP produced a higher dissolution of the glassy matrix than the use of MEP alone. The MEP can be an alternative to traditional ceramic treatment once the chemical interaction and long-term bond strength were similar between both groups. The association of hydrofluoric acid or silane with a self-etching ceramic primer did not add any benefits in terms of chemical interaction and bonding stability.
Resumo Avaliar o efeito da combinação de ácido fluorídrico ou silano com o primer autocondicionante de cerâmicas sobre a eficácia da união imediata e após 1 ano de armazenamento em água, padrão de condicionamento e interação química desses tratamentos com o dissilicato de lítio. Um total de 16 blocos CAD/CAM de dissilicato de lítio (DL) foram cortados em quatro seções quadradas (n=64).