Clinical and functional variables can predict general fatigue in patients with acromegaly: an explanatory model approach

Arch. endocrinol. metab. (Online); 63 (3), 2019
Publication year: 2019

ABSTRACT Objective To evaluate whether hormonal profile, arterial function, and physical capacity are predictors of fatigue in patients with acromegaly.

Subjects and methods:

This is a cross-sectional study including 23 patients. The subjects underwent a Modified Fatigue Impact Scale (MFIS) assessment; serum growth hormones (GH) and IGF-1 measurements; pulse wave analysis comprising pulse wave velocity (PWV), arterial compliance (AC), and the reflection index (IR1,2); dominant upper limb dynamometry (DYN); and the six-minute walking distance test (6MWT). Multiple linear regression models were used to identify predictors for MFIS. The coefficient of determination R2 was used to assess the quality of the models' fit. The best model was further analyzed using a calibration plot and a limits of agreement (LOA) plot. Results The mean ± SD values for the participants' age, MFIS, PWV, AC, IR1,2, DYN, and the distance in the 6MWT were 49.4 ± 11.2 years, 31.2 ± 18.9 score, 10.19 ± 2.34 m/s, 1.08 ± 0.46 x106 cm5/din, 85.3 ± 29.7%, 33.9 ± 9.3 kgf, and 603.0 ± 106.1 m, respectively. The best predictive model (R2 = 0.378, R2 adjusted = 0.280, standard error = 16.1, and P = 0.026) comprised the following regression equation: MFIS = 48.85 - (7.913 × IGF-I) + (1.483 × AC) - (23.281 × DYN). Conclusion Hormonal, vascular, and functional variables can predict general fatigue in patients with acromegaly.

More related