Metabolic engineering strategies for caffeic acid production in Escherichia coli
Electron. j. biotechnol; 38 (), 2019
Publication year: 2019
Caffeic acid (CA; 3,4-dihydroxycinnamic acid) is an aromatic compound obtained by the phenylpropanoid pathway. This natural product has antioxidant, antitumor, antiviral, and anti-inflammatory activities. It is also a precursor of CA phenethyl ester (CAPE), a compound with potential as an antidiabetic and liver-protective agent. CA can be found at low concentrations in plant tissues, and hence, its purification is difficult and expensive. Knowledge regarding the pathways, enzymes, and genes involved in CA biosynthesis has paved the way for enabling the design and construction of microbial strains with the capacity of synthesizing this metabolite. In this review, metabolic engineering strategies for the generation of Escherichia coli strains for the biotechnological production of CA are presented and discussed.