Mapeamento da antiga cobertura vegetal de várzea do Baixo Amazonas a partir de imagens históricas (1975-1981) do Sensor MSS-Landsat
Mapping ancient vegetation cover of the Amazon floodplain using historical MSS/Landsat images (1975-1981)
Acta amaz; 41 (1), 2011
Publication year: 2011
Este estudo apresenta um mapa da cobertura vegetal da planície de inundação do Rio Amazonas entre as cidades de Parintins (AM) e Almeirim (PA), com base em imagens Landsat-MSS adquiridas entre 1975 e 1981. O processamento digital dessas imagens envolveu a transformação para imagens-fração de vegetação, solo e água escura (sombra), seguido da aplicação de técnicas de segmentação e classificação por região.
O mapa resultante da classificação foi organizado em quatro classes de cobertura do solo:
floresta de várzea, vegetação não-florestal de várzea, solo exposto e água aberta.A precisão do mapa foi estimada a partir de dois tipos de informações coletadas em campo:
1) pontos de descrição: para validação das classes de cobertura não sujeitas a grandes alterações, como é o caso dos corpos d'água permanentes, e identificação de indicadores dos tipos de cobertura original presentes na paisagem na ocasião da obtenção das imagens (72 pontos); 2) entrevistas com moradores antigos para a recuperação da memória sobre a cobertura vegetal existente há 30 anos (44 questionários). Ao todo foram coletadas informações em 116 pontos distribuídos ao longo da área de estudo. Esses pontos foram utilizados para calcular o Índice Kappa de concordância entre os dados de campo e o mapa resultante da classificação automática, cujo valor (0,78) indica a boa qualidade do mapa de cobertura vegetal da várzea. Os resultados mostram que a região possuía uma cobertura florestal de várzea de aproximadamente 8.650 km2 no período de aquisição das imagens.
This study presents a vegetation map of the Amazon River floodplain between the towns of Parintins (AM) and Almeirim (PA), based on Landsat-MSS scenes from 1975 to 1981. Digital processing involved the transformation of multispectral images into fraction-images of vegetation, soil and dark water (shadow), followed by the application of segmentation and region-classification techniques.