Inteligencia artificial e innovación para optimizar el proceso de diagnóstico de la tuberculosis
Artificial intelligence and innovation to optimize the tuberculosis diagnostic process
Rev. peru. med. exp. salud publica; 37 (3), 2020
Publication year: 2020
RESUMEN La tuberculosis sigue siendo un tema urgente en la agenda de la salud urbana, especialmente en países de medianos y bajos ingresos. Existe la necesidad de desarrollar e implementar soluciones innovadoras y efectivas en el proceso de diagnóstico de la tuberculosis. En este artículo, se describe la importancia de la inteligencia artificial como una estrategia para enfrentar la tuberculosis, mediante un diagnóstico oportuno. Además de los factores tecnológicos, se enfatiza el rol de los factores sociotécnicos, culturales y organizacionales. Se presenta como caso la herramienta eRx que involucra algoritmos de aprendizaje profundo y, en específico, el uso de redes neuronales convolucionales. eRx es una herramienta prometedora basada en inteligencia artificial para el diagnóstico de tuberculosis que comprende una variedad de técnicas innovadoras que implican el análisis remoto de rayos X para casos sospechosos de tuberculosis. Las innovaciones basadas en herramientas de inteligencia artificial pueden optimizar el proceso de diagnóstico de la tuberculosis y de otras enfermedades transmisibles.
ABSTRACT Tuberculosis remains an urgent issue on the urban health agenda, especially in low- and middle-income countries. There is a need to develop and implement innovative and effective solutions in the tuberculosis diagnostic process. In this article, We describe the importance of artificial intelligence as a strategy to address tuberculosis control, particularly by providing timely diagnosis. Besides technological factors, the role of socio-technical, cultural and organizational factors is emphasized. The eRx tool involving deep learning algorithms and specifically the use of convolutional neural networks is presented as a case study. eRx is a promising artificial intelligence-based tool for the diagnosis of tuberculosis; which comprises a variety of innovative techniques involving remote X-ray analysis for suspected tuberculosis cases. Innovations based on artificial intelligence tools can optimize the diagnostic process for tuberculosis and other communicable diseases.