Rev. inf. cient; 100 (1), 2021
Publication year: 2021
RESUMEN Introducción:
Los datos de movilidad en tiempo real de Wuhan, China, y datos de casos detallados, incluido el historial de viajes, para determinar el impacto de las medidas de control, fue de vital importancia para el control de la COVID-19. Objetivo:
Analizar los casos reportados en los cinco regiones más afectadas de Perú por la COVID-19 y la correlacion con los datos de movilidad. Método:
Se incluyeron los datos de los casos confirmados de COVID-19 que fueron obtenidos del Centro Nacional de Epidemiologia, Prevención y Control de Enfermedades de Perú (https://www.dge.gob.pe/), en el periodo desde 6 de emarzo hasta el 17 de agosto de 2020, y se seleccionaron las regiones con mayor cantidad de casos (CDC-Peru) (Arequipa, Callao, Lima, Lambayeque y Piura). Los datos de movilidad fueron obtenidos de los Informes de Movilidad Local (Community Mobility Reports-Google Mobility Reports) (https://www.google.com/covid19/mobility/) del Perú y se descargaron en un archivo CSV. Las categorias incluidas de los reportes de movilidad fueron:
tiendas minoristas y ocio, estaciones de transporte público, lugares de trabajo y zonas residenciales. Resultados:
Se analizaron 165 datos encontrados en Google Mobility Reports, estos tenían una frecuencia diaria de datos, la misma cantidad de datos fue obtenida del CDC-Perú. Se observó una caída de todos los lugares estudiados menos de las zonas residenciales a nivel país. En cuanto a las asociaciones se encontró una correlacion negativa solo en las zonas residenciales. Conclusión:
Hubo una reducción de movilidad dada por la cuarentena y un factor protector para evitar contagios es el permanecer en casa.
ABSTRACT Introduction:
Real-time mobility data from Wuhan, China, and detailed case data, including travel history, was of vital importance for the control of COVID-19, in order to determine the impact of control measures. Objective:
To analyze the cases reported in the five most affected regions by COVID-19 in Peru, and its correlation with mobility data. Method:
Data of the confirmed cases of COVID-19 obtained from the Centro Nacional de Epidemiologia, Prevención y Control de Enfermedades de Perú (National Center for Epidemiology, Prevention and Control of Diseases of Peru) (https://www.dge.gob.pe/) in the period from 6 From March until August 17, 2020 were included; and the regions with the highest number of cases (CDC-Peru) (Arequipa, Callao, Lima, Lambayeque and Piura) were selected. The mobility data was obtained from the Local Mobility Reports (Community Mobility Reports-Google Mobility Reports) (https://www.google.com/covid19/mobility/) of Peru and downloaded in a CSV file. The categories included in the mobility reports were:
retail stores and leisure, public transport stations, workplaces and residential areas. Results:
165 data found in Google Mobility Reports were analyzed; these having a daily data frequency. The same amount of data was obtained from the CDC-Peru. A drop was observed in all places studied except for residential areas in the country. Regarding associations, a negative correlation was found only in residential areas. Conclusion:
There was a reduction in mobility due to quarantine, and staying at home is a factor to avoid infections.
RESUMO Introdução:
Dados de mobilidade em tempo real de Wuhan, China, e dados detalhados de casos, incluindo histórico de viagens, para determinar o impacto das medidas de controle, foram de vital importância para o controle do COVID-19. Objetivo:
Analisar os casos notificados nas cinco regiões mais afetadas pelo COVID-19 no Peru e a correlação com os dados de mobilidade. Método:
Foram incluídos os dados dos casos confirmados de COVID-19 obtidos do Centro Nacional de Epidemiologia, Prevención y Control de Enfermedades de Perú (https://www.dge.gob.pe/), no período desde 6 de março até 17 de agosto de 2020, sendo selecionadas as regiões com maior número de casos (CDC-Peru) (Arequipa, Callao, Lima, Lambayeque e Piura). Os dados de mobilidade foram obtidos dos Relatórios de Mobilidade Local (Community Mobility Reports-Google Mobility Reports) (https://www.google.com/covid19/mobility/) do Peru e baixado em um arquivo CSV. As categorias incluídas nos relatórios de mobilidade foram:
lojas de varejo e lazer, estações de transporte público, locais de trabalho e áreas residenciais. Resultados:
Foram analisados 165 dados encontrados no Google Mobility Reports, estes tinham uma frequência de dados diária, a mesma quantidade de dados foi obtida do CDC-Peru. Uma queda foi observada em todos os locais estudados, exceto para áreas residenciais em nível de país. Em relação às associações, foi encontrada correlação negativa apenas nas áreas residenciais. Conclusões:
Houve redução da mobilidade devido à quarentena e um fator de proteção para evitar o contágio é a permanência em casa.