Comparison between Thin-Layer Models and Non-Traditional Methods in the Modelling of Drying Kinetics of Crustacean Wastes
Braz. arch. biol. technol; 64 (), 2021
Publication year: 2021
Abstract This research aims to compare the classical thin-layer models, stepwise fit regression method (SRG) and artificial neural networks (ANN) in the modelling of drying kinetics of shrimp shell and crab exoskeleton. Thus, drying curves were obtained using a convective dryer (3.0 m/s) at temperatures of 30.45 and 60oC. The results showed a decreasing tendency for the drying time as the temperature increased for both materials. Drying curves modelling of both materials showed fitted results with R 2 adj >0.998 and MRE<13.128% for some thin-layer models. On the other hand, by SRG a simple model could be obtained as a function of time and temperature, with the greatest accuracy being found in the modelling of experimental data of crab exoskeleton, with MRE<10.149%. Finally, the ANNs were employed successfully in the modelling of drying kinetics, showing high prediction quality with the trained recurrent ANN models.