Computational classification of animals for a highway detection system
Classificação computacional de animais para sistema de detecção nas rodovias
Braz. J. Vet. Res. Anim. Sci. (Online); 58 (n.esp), 2021
Publication year: 2021
Vehicle-animal collisions represent a serious problem in roadway infrastructure. To avoid these roadway collisions, different mitigation systems have been applied in various regions of the world. In this article, a system for detecting animals on highways is presented using computer vision and machine learning algorithms.
The models were trained to classify two groups of animals:
capybaras and donkeys. Two variants of the convolutional neural network called Yolo (You only look once) were used, Yolov4 and Yolov4-tiny (a lighter version of the network). The training was carried out using pre-trained models. Detection tests were performed on 147 images. The accuracy results obtained were 84.87% and 79.87% for Yolov4 and Yolov4-tiny, respectively. The proposed system has the potential to improve road safety by reducing or preventing accidents with animals.(AU)
As colisões entre veículos e animais representam um sério problema na infraestrutura rodoviária. Para evitar tais acidentes, medidas mitigatórias têm sido aplicadas em diferentes regiões do mundo. Neste projeto é apresentado um sistema de detecção de animais em rodovias utilizando visão computacional e algoritmo de aprendizado de máquina.