Evaluating performance and determining optimum sample size for regression tree and automatic linear modeling
[Avaliando o desempenho e determinando o tamanho ideal da amostra para árvore de regressão e modelagem linear automática]

Arq. bras. med. vet. zootec. (Online); 73 (6), 2021
Publication year: 2021

This study was carried out for two purposes:

comparing performances of Regression Tree and Automatic Linear Modeling and determining optimum sample size for these methods under different experimental conditions. A comprehensive Monte Carlo Simulation Study was designed for these purposes. Results of simulation study showed that percentage of explained variation estimates of both Regression Tree and Automatic Linear Modeling was influenced by sample size, number of variables, and structure of variance-covariance matrix. Automatic Linear Modeling had higher performance than Regression Tree under all experimental conditions. It was concluded that the Regression Tree required much larger samples to make stable estimates when comparing to Automatic Linear Modeling.(AU)

Este estudo foi realizado com dois objetivos:

comparar os desempenhos da Árvore de Regressão e da Modelagem Linear Automática e determinar o tamanho ideal da amostra para estes métodos sob diferentes condições experimentais. Um abrangente Estudo de Simulação de Monte Carlo foi projetado para estes propósitos. Os resultados do estudo de simulação mostraram que a porcentagem de estimativas de variação explicada tanto da Árvore de Regressão como da Modelagem Linear Automática foi influenciada pelo tamanho da amostra, número de variáveis e estrutura da matriz de variância-covariância. A Modelagem Linear Automática teve um desempenho superior ao da Árvore de Regressão em todas as condições experimentais. Concluiu-se que a Árvore de Regressão exigia amostras muito maiores para fazer estimativas estáveis quando comparada à Modelagem Linear Automática.(AU)

More related