Zuccagnia punctata Cav. Essential Oil into Poly(ε-caprolactone) Matrices as a Sustainable and Environmentally Friendly Strategy Biorepellent against Triatoma infestans (Klug) (Hemiptera, Reduviidae)

Moléculas; 26 (13), 2021
Publication year: 2021

The main strategies against Triatoma infestans (primary vector responsible for the Chagas disease transmission) are the elimination or reduction of its abundance in homes through the application of insecticides or repellents with residual power, and environmental management through the improvement of housing. The use of plant-derived compounds as a source of therapeutic agents (i.e., essential oils from aromatic plants and their components) is a valuable alternative to conventional insecticides and repellents. Essential oil-based insect repellents are environmentally friendly and provide reliable personal protection against the bites of mosquitoes and other blood-sucking insects. This study investigates, for the first time to our knowledge, the potential repellent activity of Zuccagnia punctata essential oil (ZEO) and poly(ε-caprolactone) matrices loaded with ZEO (ZEOP) prepared by solvent casting. The analysis of its essential oil from aerial parts by GC–FID and GC-MS, MS allowed the identification of 25 constituents representing 99.5% of the composition. The main components of the oil were identified as (−)-5,6-dehydrocamphor (62.4%), alpha-pinene (9.1%), thuja-2, 4 (10)-diene (4.6%) and dihydroeugenol (4.5%). ZEOP matrices were homogeneous and opaque, with thickness of 800 ± 140 µm and encapsulation efficiency values above 98%. ZEO and ZEOP at the lowest dose (0.5% wt./wt., 96 h) showed a repellency of 33 and 73% respectively, while at the highest dose (1% wt./wt., 96 h) exhibited a repellent activity of 40 and 66 %, respectively. On the other hand, until 72 h, ZEO showed a strong repellent activity against T. infestans (88% repellency average; Class V) to both concentrations, compared with positive control N-N diethyl-3-methylbenzamide (DEET). The essential oils from the Andean flora have shown an excellent repellent activity, highlighting the repellent activity of Zuccagnia punctata. The effectiveness of ZEO was extended by its incorporation in polymeric systems and could have a potential home or peridomiciliary use, which might help prevent, or at least reduce, Chagas’ disease transmission.

More related