Predicting the Probability of Lymph Node Involvement with Prostate Cancer Nomograms: Can We Trust the Prediction Models?
Predicción de la probabilidad de compromiso ganglionar con nomogramas para cáncer de próstata. ¿Podemos confiar en los modelos de predicción
urol. colomb. (Bogotá. En línea); 29 (3), 2020
Publication year: 2020
Introduction Prediction of lymph node involvement (LNI) is of paramount importance for patients with prostate cancer (PCa) undergoing radical prostatectomy (RP). Multiple statistical models predicting LNI have been developed to support clinical decision-making regarding the need of extended pelvic lymph node dissection (ePLND). Our aim is to evaluate the prediction ability of the best-performing prediction tools for LNI in PCa in a Latin-American population.
Methods Clinicopathological data of 830 patients with PCa who underwent RP and ePLND between 2007 and 2018 was obtained. Only data from patients who had ≥ 10 lymph nodes (LNs) harvested were included (n = 576 patients).
Four prediction models were validated using this cohort:
The Memorial Sloan Kettering Cancer Center (MSKCC) web calculator, Briganti v.2017, Yale formula and Partin tables v.2016. The performance of the prediction tools was assessed using the area under the receiver operating characteristic (ROC) curve (AUC). Results The median age was 61 years old (interquartile range [IQR] 56–66), the median Prostate specific antigen (PSA) was 6,81 ng/mL (IQR 4,8–10,1) and the median of LNs harvested was 17 (IQR 13–23), and LNI was identified in 53 patients (9.3%). Predictions from the 2017 Briganti nomogram AUC (0.85) and the Yale formula AUC (0.85) were the most accurate; MSKCC and 2016 Partin tables AUC were both 0,84. Conclusion There was no significant difference in the performance of the four validated prediction tools in a Latin-American population compared with the European or North American patients in whom these tools have been validated. Among the 4 models, the Briganti v.2017 and Yale formula yielded the best results, but the AUC overlapped with the other validated models.
Introducción La predicción del compromiso ganglionar es de suma importancia en pacientes con cáncer de próstata (CaP) que se van a someter a prostatectomía radical (PR). Múltiples modelos estadísticos se han desarrollado para predecir el riesgo de compromiso ganglionar y facilitar las decisiones clínicas de realizar o no linfadenectomía pélvica ampliada (LPA). Nuestro objetivo es evaluar la habilidad de predicción de las mejores herramientas de predicción de compromiso ganglionar en CaP en una población latinoamericana.
Métodos Se evaluaron los datos clínico-patológicos de 830 pacientes con CaP sometidos a PR y LPA entre el 2007–2018. Solo se analizaron os pacientes con 10 o más ganglios extraídos (n = 576).