Acta cir. bras; 38 (), 2023
Publication year: 2023
Purpose:
To explore the protection of naringenin against oxygen-glucose deprivation/reperfusion (OGD/R)-induced HT22 cell injury, a cell model of cerebral ischemia/reperfusion (I/R) injury in vitro, focusing on SIRT1/FOXO1 signaling pathway. Methods:
Cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, malondialdehyde (MDA) content, 4-hydroxynonenoic acid (4-HNE) level, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities were measured by commercial kits. Inflammatory cytokines levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expressions were monitored by Western blot analysis. Results:
Naringenin significantly ameliorated OGD/Rinduced cytotoxicity and apoptosis in HT22 cells. Meanwhile, naringenin promoted SIRT1 and FOXO1 protein expressions in OGD/R-subjected HT22 cells. In addition, naringenin attenuated OGD/R-induced cytotoxicity, apoptosis, oxidative stress (the increased ROS, MDA and 4-HNE levels, and the decreased SOD, GSH-Px and CAT activities) and inflammatory response (the increased tumor necrosis factor-α, interleukin [IL]-1β, and IL-6 levels and the decreased IL-10 level), which were blocked by the inhibition of the SIRT1/FOXO1 signaling pathway induced by SIRT1-siRNA transfection. Conclusion:
Naringenin protected HT22 cells against OGD/R injury depending on its antioxidant and anti-inflammatory activities via promoting the SIRT1/FOXO1 signaling pathway.