Acta cir. bras; 38 (), 2023
Publication year: 2023
Purpose:
This study compared, through biomechanical evaluation under ventral flexion load, four surgical techniques for ventral stabilization of the atlantoaxial joint in dogs. Methods:
In total, 28 identical atlantoaxial joint models were created by digital printing from computed tomography images of a dog, and the specimens were divided into four groups of seven. In each group, a different technique for ventral stabilization of the atlantoaxial joint was performed: transarticular lag screws, polyaxial screws, multiple screws and bone cement (polymethylmethacrylate–PMMA), and atlantoaxial plate. After the stabilization technique, biomechanical evaluation was performed under ventral flexion load, both with a predefined constant load and with a gradually increasing load until stabilization failure. Results:
All specimens, regardless of stabilization technique, were able to support the predefined load without failing. However, the PMMA method provided significant more rigidity (p ≤ 0.05) and also best resisted the gradual increase in load, supporting a significantly higher maximum force (p ≤ 0.05). There was no statistical difference in flexural strength between the transarticular lag screws and plate groups. The polyaxial screws method was significantly less resistant to loading (p ≤ 0.05) than the other groups. Conclusions:
The PMMA technique had biomechanical advantages in ventral atlantoaxial stabilization over the other evaluated methods.