Physicochemical Properties and Dentin Bond Strength of a Tricalcium Silicate-Based Retrograde Material
Braz. dent. j; 28 (1), 2017
Publication year: 2017
Abstract The aim of this study was to evaluate the physicochemical properties and the apical dentin bond strength of the tricalcium silicate-based Biodentine in comparison to white MTA and zinc oxide eugenol-based cement (ZOE).
Setting time and radiopacity were evaluated according to ISO 6876:
2012 specification. Final setting time, compressive strength and pH were also assessed. Material’s bond strength to the apical root canal dentin was measured by the push-out assay. Data were analyzed by ANOVA and Tukey-Krammer post-hoc test. Biodentine presented the shortest initial (16.2±1.48 min) and final setting time (35.4±5.55 min). Radiopacity of Biodentine (2.79±0.27 mmAl) does not agree with ISO 6876:2012 specifications. On the other hand, Biodentine showed higher compressive strength after 21 days (37.22±5.27 MPa) and higher dentin bond strength (11.2±2.16 MPa) in comparison to white MTA (27.68±3.56 MPa for compressive strength and 2.98±0.64 MPa for bond strength) (p<0.05). Both MTA and Biodentine produced an alkaline environment (approximately pH 10) (p>0.05) compared to ZOE (pH 7). It may be concluded that Biodentine exhibited faster setting, higher long-term compressive strength and bond strength to the apical dentin than MTA and ZOE.
Resumo O objetivo deste estudo foi avaliar as propriedades físico-químicas e a resistência de união à dentina apical do cimento Biodentine em comparação ao MTA branco e cimento à base de óxido de zinco e eugenol (OZE).