Mechanism of hif-1α mediated hypoxia-induced permeability changes in bladder endothelial cells

Braz. j. med. biol. res; 51 (2), 2018
Publication year: 2018

This study aimed to investigate the mechanism of hypoxia-inducible factor-1 alpha (HIF-1α) mediated hypoxia-induced permeability changes in bladder endothelial cells. Models of in vitro hypoxic cell culture of bladder cancer, bladder cancer cells with low HIF-1α expression and HIF-1α RNA interference (RNAi) expression vector were established. Western blot and reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of HIF-1α and vascular endothelial growth factor (VEGF) in each group. Bladder cell permeability was determined. Results showed that protein and mRNA expression of HIF-1α and VEGF at 3 and 12 h of hypoxia were significantly higher than normal control (P<0.05), and peaked at 12 h. HIF-1α and VEGF expression in the hypoxic group and hypoxic+3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1) group were significantly higher than normal control (P<0.05), while expression in the hypoxic+YC-1 group was significantly lower than the hypoxic group (P<0.05). Bladder cell permeability in the hypoxic and hypoxic+YC-1 group were significantly increased compared to normal control (P<0.05), while in the hypoxic+YC-1 group was significantly decreased compared to the hypoxic group (P<0.05). Most of the cells in the stably transfected HIF-1α RNAi expression vector pcDNA6.2-GW/EmGFP-miR-siHIF-1α expressed green fluorescence protein (GFP) under fluorescence microscope. pcDNA6.2-GW/EmGFP-miR-siHIF-1α could significantly inhibit HIF-1α gene expression (P<0.05). HIF-1α and VEGF expression in the hypoxic group and siHIF-1α hypoxic group were significantly higher than normal group (P<0.05), while expression in the siHIF-1α hypoxic group was significantly lower than the hypoxic group (P<0.05). Findings suggest that HIF-1α is an important factor in the increase of bladder cancer cell permeability.

More related