Modelo para el análisis de la mortalidad en Colombia 2000-2012
A model for mortality analysis in Colombia. 2000-2012
Rev. salud pública; 19 (2), 2017
Publication year: 2017
RESUMEN Objetivo Proponer y evaluar un modelo para el ajuste y predicción de la mortalidad en Colombia que permita analizar tendencias por edad, sexo, Departamento y causa. Metodología Los registros de defunciones no fetales fueron utilizados como fuente primaria de análisis. Estos datos se pre-procesaron recodificando las causas y redistribuyendo los códigos basura. El modelo de predicción se formuló como una aproximación lineal de un conjunto de variables de interés, en particular la población y el producto interno bruto departamental. Resultados Como caso particular de estudio se tomó la mortalidad de menores de 5 años, se observó una disminución sostenida a partir del año 2000 tanto a nivel nacional como departamental, con excepción de tres departamentos. La evaluación del poder predictivo de la metodología propuesta se realizó ajustando el modelo con los datos de 2000 a 2011, la predicción para el 2012 fue comparada con la tasa observada, estos resultados muestran que el modelo es suficientemente confiable para la mayor parte de las combinaciones departamento-causa. Conclusiones La metodología y modelo propuesto tienen el potencial de convertirse en un instrumento que permita orientar las prioridades del gasto en salud utilizando algún tipo de evidencia.(AU)
ABSTRACT Objective To propose and evaluate a model for fitting and forecasting the mortality rates in Colombia that allows analyzing the trends by age, sex, region and cause of death. Methodology The national death registries were used as primary source of analysis. The data was pre-processed recodifying the cause of death and redistributing the garbage codes. The forecast model was formulated as a linear approximation with a set of variables of interest, in particular the population and gross domestic product (GDP) by region. Results As study case we took the mortality under 5 years old, it decreased steadily since 2000 at the national level and at most of the regions. The predictive power of the proposed methodology was tested by fitting the model with the data from 2000 to 2011, the forecast for 2012 was compared with the actual rate, and these results show the model is reliable enough for most of the region-cause combinations. Conclusions The proposed methodology and model have the potential to become an instrument to guide health spending priorities using some kind of evidence.(AU)