Integrin-β1, not integrin-β5, mediates osteoblastic differentiation and ECM formation promoted by mechanical tensile strain

Biol. Res; 48 (), 2015
Publication year: 2015

BACKGROUND:

Mechanical strain plays a great role in growth and differentiation of osteoblast. A previous study indicated that integrin-β (β1, β5) mediated osteoblast proliferation promoted by mechanical tensile strain. However, the involvement of integrin-β; in osteoblastic differentiation and extracellular matrix (ECM) formation induced by mechanical tensile strain, remains unclear.

RESULTS:

After transfection with integrin-β1 siRNA or integrin-β5 siRNA, mouse MC3T3-E1 preosteoblasts were cultured in cell culture dishes and stimulated with mechanical tensile strain of 2500 microstrain (με) at 0.5 Hz applied once a day for 1 h over 3 or 5 consecutive days. The cyclic tensile strain promoted osteoblastic differentiation of MC3T3-E1 cells. Transfection with integrin-β1 siRNA attenuated the osteoblastic diffenentiation induced by the tensile strain. By contrast, transfection with integrin-β5 siRNA had little effect on the osteoblastic differentiation induced by thestrain. At thesametime, theresultofECM formation promoted by the strain, was similar to the osteoblastic differentiation.

CONCLUSION:

Integrin-β1 mediates osteoblast differentiation and osteoblastic ECM formation promoted by cyclic tensile strain, and integrin-β5 is not involved in the osteoblasts response to the tensile strain.

More related