Effects of purine nucleotide administration on purine nucleotide metabolism in brains of heroin-dependent rats
Braz. j. pharm. sci; 52 (4), 2016
Publication year: 2016
ABSTRACT Heroin is known to enhance catabolism and inhibit anabolism of purine nucleotides, leading to purine nucleotide deficiencies in rat brains. Here, we determined the effect of exogenous purine nucleotide administration on purine nucleotide metabolism in the brains of heroin-dependent rats. Heroin was administrated in increasing doses for 9 consecutive days to induce addiction, and the biochemical changes associated with heroin and purine nucleotide administration were compared among the treated groups. HPLC was performed to detect the absolute concentrations of purine nucleotides in the rat brain cortices. The enzymatic activities of adenosine deaminase (ADA) and xanthine oxidase (XO) in the treated rat cortices were analyzed, and qRT-PCR was performed to determine the relative expression of ADA, XO, adenine phosphoribosyl transferase (APRT), hypoxanthine-guaninephosphoribosyl transferase (HGPRT), and adenosine kinase (AK). Heroin increased the enzymatic activity of ADA and XO, and up-regulated the transcription of ADA and XO. Alternatively, heroin decreased the transcription of AK, APRT, and HGPRT in the rat cortices. Furthermore, purine nucleotide administration alleviated the effect of heroin on purine nucleotide content, activity of essential purine nucleotide metabolic enzymes, and transcript levels of these genes. Our findings therefore represent a novel, putative approach to the treatment of heroin addiction.