Morse taper performance: A finite element analysis study

Clinics; 74 (), 2019
Publication year: 2019

OBJECTIVES:

To evaluate and compare the magnitude and distribution of stresses generated on implants, abutments and first molar metal-ceramic crowns using finite element analysis.

METHODS:

Preliminary three-dimensional models were created using the computer-aided design software SolidWorks.

Stress and strain values were observed for two distinct virtual models:

model 1 - Morse taper and solid abutment; model 2 - Morse taper and abutment with screw. A load (250 N) was applied to a single point of the occlusal surface at 15° to the implant long axis.

Von Mises stresses were recorded for both groups at four main points:

1) abutment-retaining screws; 2) abutment neck; 3) cervical bone area; 4) implant neck.

RESULTS AND CONCLUSION:

Model 1 showed a higher stress value (1477.5 MPa) at the abutment-retaining screw area than the stresses found in model 2 (1091.1 MPa for the same area). The cervical bone strain values did not exceed 105 µm for either model.

More related