Utilização de diagramas causais e a comunicação de fontes de incerteza em estudos observacionais
Use of causal DAG and reporting of uncertainty in observational studies
Publication year: 2018
Theses and dissertations in Portugués presented to the Universidade do Estado do Rio de Janeiro, Instituto de Medicina Social to obtain the academic title of Doutor. Leader: Claudio José Struchiner
Os diagramas causais (gráficos acíclicos direcionados – DAG) têm sido apontados como uma das principais ferramentas que podem contribuir para a qualidade metodológica e do relato de estudos observacionais. No entanto, pouco se sabe sobre como essas ferramentas têm sido utilizadas nas investigações empíricas. Neste trabalho, foi realizada uma revisão da literatura com o objetivo de descrever o quanto, como e onde os diagramas causais têm sido utilizados em estudos observacionais analíticos nos últimos 18 anos. Foram realizadas buscas por citações e pesquisas por palavras-chaves nas bases de dados do PubMed e Web of Science. Em uma amostra de 100 artigos que apresentaram a estrutura causal, foram avaliadas as características dos modelos gráficos e o relato de confundimento. Além disso, foi realizada uma análise comparativa do relato das limitações do estudo e da frequência de marcadores linguísticos de incerteza (hedges) nos artigos com e sem a utilização de DAG causais. Foram identificadas 1034 publicações, totalizando 5021 autores e 85 países de afiliação. Apenas 430 artigos (42%) forneceram a estrutura gráfica. A maioria das publicações contém apenas um DAG causal (87%) e poucos modelos gráficos contêm confundidores não observados (23%), ou a representação de erros de mensuração (6%) e mecanismos de seleção (3%). O relato de modificações no conjunto de ajuste foi observado em 19% das publicações. Além disso, 20% foram classificadas como possível ocorrência da falácia da tabela 2. O número de limitações do estudo reconhecidas pelos autores e a frequência de marcadores de incerteza foram semelhantes nas amostras de artigos com e sem diagramas causais. No entanto, o relato de avaliações quantitativas das limitações do estudo foi mais frequente entre os artigos com DAG (52% vs. 21%). Há necessidade de mais discussões e estudos sobre a construção e análise de modelos causais e o desenvolvimento de recomendações gerais para apresentação de DAG causais nos artigos científicos