Aprendizado de estruturas de dependência entre fenótipos da síndrome metabólica em estudos genômicos
Structure learning of the metabolic syndrome phenotypes network in family genomic studies

Publication year: 2017
Theses and dissertations in Portugués presented to the Universidade de São Paulo. Faculdade de Saúde Pública. Departamento de Prática de Saúde Pública to obtain the academic title of Mestre. Leader: Alencar, Gizelton Pereira

Introdução:

O número de estudos relacionados à Síndrome Metabólica (SM) vem aumentando nos últimos anos, muitas vezes motivados pelo aumento do número de casos de sobrepeso/obesidade e diabetes Tipo II levando ao desenvolvimento de doenças cardiovasculares e, como consequência, infarto agudo do miocárdio e AVC, dentre outros desfechos desfavoráveis. A SM é uma doença multifatorial composta de cinco características, porém, para que um indivíduo seja diagnosticado com ela, possuir pelo menos três dessas características torna-se condição suficiente.

Essas cinco características são:

Obesidade visceral, caracterizada pelo aumento da circunferência da cintura, Glicemia de jejum elevada, Triglicérides aumentado, HDL-colesterol reduzido, Pressão Arterial aumentada.

Objetivo:

Estabelecer a rede de associações entre os fenótipos que compõem a Síndrome Metabólica através do aprendizado de estruturas de dependência, decompor a rede em componentes de correlação genética e ambiental e avaliar o efeito de ajustes por covariáveis e por variantes genéticas exclusivamente relacionadas à cada um dos fenótipos da rede.

Material e Métodos:

A amostra do estudo corresponderá a 79 famílias da cidade mineira de Baependi, composta por 1666 indivíduos. O aprendizado de estruturas de redes será feito por meio da Teoria de Grafos e Modelos de Equações Estruturais envolvendo o modelo linear misto poligênico para determinar as relações de dependência entre os fenótipos que compõem a Síndrome Metabólica

Introduction:

The number of studies related to Metabolic Syndrome (MetS) has been increasing in the last years, encouraged by the increase on the overweight / obesity and Type II Diabetes cases, leading to the development of cardiovascular disease and, therefore, acute myocardial infarction and stroke, and others unfavorable outcomes. MetS is a multifactorial disease containing five characteristics, however, for an individual to be diagnosed with MetS, he/she may have at least three of them.

These characteristics are:

Truncal Obesity, characterized by increasing on the waist circumference, increasing on Fasting Blood Glucose, increasing on Triglycerides, decreasing on HDL cholesterol and increasing on Blood Pressure.

Aims:

Establish the best association network between MetS phenotypes through structured dependency learning between phenotypes considering genetic variants exclusively related to each phenotype.

Materials and Methods:

The study sample is composed of 79 families, 1666 individuals of a city in a rural area of Brazil, called Beapendi. Structured learning will use graph theory and Structural Equations Models to establish the dependency relations between MetS phenotypes

More related